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ABSTRACT 

Game theoretic approaches, particularly Stackelberg games, have 

been widely deployed in recent years to allocate security 

resources. Most existing security game models assume that a 

security resource assigned to a target can only protect that target. 

However, in many important real-world security scenarios, when a 

resource is assigned to a target it exhibits protection externalities; 

that is, it simultaneously provides protection for nearby targets.  

We build off of the formulation in Gan et al. [Gan] that 

incorporates protection externalities within a Stackelberg game.  

They made no assumptions about the topology of the space in 

which the targets and defense resources are located. However, this 

meant that resources were constrained so that they could only be 

located on a target. We note that in many cases security problems 

are fundamentally planar and develop a new model that 

incorporates this assumption. By constraining the problem to a 

planar space, we are able to consider a more flexible set of 

locations for resources, i.e., we remove the restriction that 

resources must be located at targets.  We then evaluate the 

effectiveness of our model in comparison to Gan’s model in terms 

of overall defender solution quality, and find that it is significantly 

more effective in many cases. 

1. INTRODUCTION 

1.1 Motivation and Previous Work 
Game theory is currently being applied to model security for 

airports, ports, shipping and other vulnerable infrastructure.  

Much of the research has focused on Stackelberg games, games in 

which the attacker knows the defender’s strategy when choosing 

their own through a priori surveillance [Korzhyk 11].  The goal 

of the game, from the defender’s perspective, is to pick a strategy, 

i.e., a probability distribution over resource allocations that 

maximizes their utility.   An assumption in most existing security 

game models is that a security resource assigned to a target 

protects only that target. However, in many real-world security 

scenarios, when a resource is assigned to a target, it exhibits 

protection externalities; that is, it also protects other 

“neighboring” targets.   

One formulation that includes protection externalities is described 

in Gan et al. [Gan].  Their model makes no assumptions about the 

topology of the space in which the targets and resources are 

placed, however they do include the restriction that a resource 

must be allocated “at” exactly one target in some sense. This 

restriction is undesirable because there are many scenarios in 

which one might want to place resources at locations that are not 

co-incident with a target. Consider the situation in which there are 

more targets than resources; one might want to place the resources 

between the targets so that, if the targets are close together, a 

single resource could cover more than one target. 

To do this, we need to specify the metric space in which the 

resources and targets lie. In many of the applications where 

externalities exist in the allocation of defense resources, one can 

imagine modeling the problem with targets on a plane and defense 

resources defending a disc on the plane.  When a defense resource 

is a camera, radar, or mobile unit, the region that it defends is 

roughly a disc.  Accordingly, we choose for our metric space a 

plane.  Admittedly, this model is less suited to urban areas where 

line of sight is important.  This model is also unsuited to cyber 

security or the defense of multi-story buildings, because the planar 

assumption is likely to be violated.   

2. MODEL 
Gan et al. describe a model for allocating resources to targets that 

incorporates protection externalities. We use this model as our 

inspiration and it is the model to which our approach will be 

compared.  It is described more fully in Section 2.1.  In Section 

2.2, we describe our modifications to their model and discuss the 

pros and cons of our approach. 

2.1 Gan’s Model of Externalities 
In [Gan], Gan et al. describe a Stackelberg game-based security 

model in which the defender allocates resources to a set of targets 

given that the resource has the externality of defending other 

neighboring targets. 

The defender has d resources and a set of t targets to defend.  The 

attacker’s available actions (who can only attack one target) are 

exactly the set t.  The set of actions available to the defender 

varies based on the experiment, but always corresponds to points 

on the plane so that the set of defended targets can be determined. 

These actions are used to generate a game where the payoff for 

each pair of actions depends on the value of the target and 

whether or not the attacker got caught (the defender defended the 

target that the attacker attacked).  More generally, the defender 

could have different values for targets that the attacker (the game 

could not be zero-sum). 

Their algorithm assumes the availability of an adjacency matrix A 

indicating target adjacencies.  A pure strategy for the defender 

corresponded to an allocation of integer resources/defenders to 

targets, such that each target was either defended or not defended 

(1 or 0).  The authors acknowledged the limitation of only 

locating resources at targets and not between targets, but noted 

that a dummy target with no value to the attacker or defender 

could be placed at such locations.  The set of actions available to 

the defender is the set of subsets of t of size d.   

 



2.2 Planar Model 

2.2.1 Model Definition 
Previously, the set of actions available to the defender was the set 

of subsets of t of size d.  Now, we would like to somehow allow 

resources to be placed not on targets.  So, instead of taking in as 

input an adjacency matrix for targets, we need to define a metric 

space so that we can determine distances, and therefore 

adjacencies, ourselves. Although it would be natural to consider 

defending a three-dimensional space, for simplicity, we choose for 

our metric space a plane. In summary, we are adding a new 

feature to Gan’s model, off-target resource placement, but at the 

cost of introducing a new restriction, i.e., requiring that all 

defenders and resources inhabit a two-dimensional world. 

Specifically, we allow targets and resources to be placed 

anywhere within our “world”, a rectangular region in ℝ2.  For 

convenience, we will consider the world to be bounded by [0,0] 

and [1,1]. Because there are an infinite number of points in this 

world, we need some sort of way to break it up into a finite 

number of regions such that all points within a region are 

equivalent for our purposes. 

When a defense resource is a camera, radar, or mobile unit, the 

region that it defends is roughly a disc.  Therefore, the most 

natural model is for a defense resource to defend a unit disk. 

2.2.2 Unit Disks 
Let each (uniform) resource have effective radius r. Let us notate 

the set of targets within distance r of a point p as Tp.  Then we can 

say that two points p1, p2 are equivalent as potential locations for 

a defense resource if Tp1 = Tp2.   

Recall that, if the defender has d resources, defender actions 

correspond to subsets of size d of some set of potential resource 

locations P.  In Gan’s model, P is the set of target locations.  It is 

natural for us to attempt to find the optimal P in the sense that it 

allows for best solution of the resulting game.  Consider the set S 

of points created by selecting an arbitrary point from each region 

of equivalence.  It is easy to see that for any strategy possible 

where P = ℝ2, there is an equivalent strategy (in the sense of 

having the same payoffs) when P = S. 

This is actually a stronger relation than we need; we only need for 

the best strategy available when P = ℝ2 to be available when P = 

S.  For this reason we introduce the notion of a non-dominated 

point/region.  We say that a point p1 is non-dominated if ¬∃ p2 

such that Tp1⊂Tp2.  We similarly say that a region is non-

dominated if this property holds for all points within the region.  I 

claim that the best strategy available when P = ℝ2 is also available 

when P = D where D is the subset of S that is non-dominated. 

Now the question is how to find D and how big it is.  We start by 

observing that finding Tp for a point p can alternatively be thought 

of as finding the set of disks of radius r, each centered on a target, 

that intersect at point p.  See figure 1 for a visualization of this 

representation.  Our problem of finding equivalence regions on 

the plane now resembles the problem of finding cliques in a unit 

disk graph, where disks are centered on targets.  Our problem of 

finding D would seem to correspond to the problem of finding all 

maximal cliques in the unit disk graph.  Figure 2 is one natural 

example where this seems to be true. 

 

Figure 1: The intersection model of unit disks on a plane, where 

the center of each disk is a target, is a natural model for our 

application.  This class of graphs is known as unit disk graphs. 

 

 

Figure 2: A natural example where D = the set of maximal 

cliques in the corresponding unit disk graph, {{a}, {b,c}, 

{c,d,e}}. 

 

However, it turns out that the problems are not identical.  A graph 

class defined by a geometric intersection model is said to have the 

Helly property if for every clique C, there is some single point p 

such that every vertex of C includes the point p.  Clearly, to map 

from a maximal clique back to nonempty region, we need for our 

class of graphs, unit disk graphs, to have the Helly property; it 

turns out that unit disk graphs do not have the Helly property.   



 

Figure 3: Counterexample of the Helly property for unit disk 

graphs.  The three disks form a clique of size 3, but there is no 

single point that lies within all 3 disks. 

2.2.3 Boxicity 2 Graphs 
Not only does the Helly property not hold for unit disk graphs, as 

demonstrated in figure 3, but unit disk graphs can have an 

exponential number of maximal cliques [Gupta].  It is worth 

reconsidering our model of resources defending targets within a 

unit disk at this point.  If we instead model a defense resource as 

defending all targets within some manhattan distance, finding D 

would correspond with finding all maximal cliques in a boxicity 2 

graph.  Figure 4 is an example of a boxicity 2 graph.  Boxicity 2 

graphs have the Helly property and only have O(n2) maximal 

cliques, where n in our case is the number of targets.  Because 

there are a polynomial number of maximal cliques, they can all be 

found in polynomial time [Tsukiyama]. 

 

Figure 4: A boxicity 2 graph is the intersection graph of axis-

aligned reactangles. 

 

Boxicity 2 graphs can be considered to be a polynomial 

approximation of the more natural unit disk intersection model in 

the following sense.  First construct the unit disk graph.  Then 

construct a boxicity 2 graph such that each rectangle is inscribed 

in the corresponding disk.  Two such rectangles intersect only if 

the disks they are inscribed in also intersect, as can be seen in 

figure 5.  Using this fact and the Helly property, we can see that 

for such a boxicity 2 graph the set of its maximal cliques is a 

subset of D. 

 

Figure 5: Two inscribed rectangles intersect only if the 

corresponding disks intersect. 

 

Alternatively, if we consider the boxicity 2 graph not as an 

approximation of a true, disk-based model, but as the model itself 

(i.e., each defense resource can defend all targets within some 

manhattan distance), the maximal cliques of the boxicity 2 graph 

correspond exactly to D. 

It is worth noting that although a unit disk graph has an 

exponential number of maximal cliques, because not all of these 

maximal cliques correspond to a region in D, D may still be of 

polynomial size even when a defense resource defends a unit disk.  

However the authors of this report are unaware of a method for 

enumerating the cliques that do obey the Helly property, or even 

counting them. 

3. IMPLEMENTATION 
Our model is implemented in C++ on a linux platform.  It is 

comprised of four major modules, namely, the world builder, the 

resource location selector, the game initializer, and the game 

solver.  Each of these is described in more detail below. 

3.1 World Builder 
The world builder is given the size of the world and the number 

of targets. It produces a mapping of targets to locations. Targets 

are placed uniformly at random locations. 

3.2 Resource Location Selector 
The resource location selector is given the target placements, the 

size of the world, the number of targets, and which model to use. 

It produces a set of resource locations to be considered during the 

game proper.  It implements Gan’s resource placement model and 

our planar, maximal clique algorithm. The resource location 

algorithm used is controlled by a flag for experimental purposes. 

We implemented a simple maximal clique finding algorithm that 

runs in exponential time.  It does not exploit any properties of 

boxicity 2 graphs except for the bounded number of maximal 

cliques.  It simply keeps track of candidate cliques and keeps 

growing each, possibly creating several candidates of size k+1 

from a candidate of size k.  Initial candidates are the set of 



vertices/boxes.  A candidate is added to the maximal clique list 

when it can no longer be grown while still being a clique.  Each 

candidate and its descendent candidates only need attempt to add 

each vertex once, because if it could not be included into the 

clique earlier in the process, it cannot be included later.   

Candidates are stored in a set so that duplicates of a maximal 

clique cannot be included by building them in a different order.  

To enforce the set property, it takes O(log(n)) time to insert a 

candidate.  The algorithm is exponential because any number of 

candidates can “dead end” by attempting to insert themselves into 

the maximal clique set and finding that they are a duplicate.   

3.3 Game Initializer 
The game initializer is given as input the target placements, and 

the possible resource placements.  It produces a normal form 

game utility matrix for use by the game solver.  It has three main 

tasks:  

1) It enumerates attacker actions that are simply the set of targets 

2) It enumerates defender actions by selecting subsets of selected 

resource placements; 

3) It then calculates the utility of each action pair by determining 

whether or not the attacker attacked a defended target, and using 

the value of the attacked target. 

It would be simple enough to also incorporate target values, but 

we have no reason to believe that the distribution of target values 

would affect the relative effectiveness of our model vs. Gan’s 

model.  So, we simply treat all targets as having uniform value. 

3.4 Game Solver 
The game solver is given a game in normal form utility matrix 

form, and outputs the expected utility of the defender.  

We used a linear program for solving zero sum games, which was 

implemented in homework 3 of Vanderbilt’s spring 2015 offering 

of CS396: “Computational Economics”. 

3.5 Testing Framework 
In addition to the modules there is a testing framework for their 

combination and analysis.  A shell script that loops over all 

parameter values in the specified ranges, loops for the specified 

number of trials (100 in our case), calls the other modules in order 

with those parameters, and outputs the final resulting defender 

utility of each trial to a csv file for later analysis. 

4. RESULTS 

4.1 Experimental Design 
We will compare three models:   

1) A simple security game with no protection externalities 

2) Gan’s model 

3) Our planar, maximal-clique model 

Model (1) can be viewed as a special case of (2) or (3) in which 

resource range = 0.  Because we assign targets uniform value for 

the attacker and defender, the solution to (1) will always be to 

distribute defense resources with uniform probability among 

targets. 

We will often refer to our model as the Planar model.  We will 

sometimes refer to model (2) as the Non-Planar model, but recall 

that in (2) the defender benefits from the range of its resources 

and is merely naïve with respect to the underlying planar model. 

Model (1) will be treated as a baseline for (2) and (3), so that we 

can see how much utility the defender gains from the existence of 

planar externalities (and awareness of externalities), and how 

much the defender gains from awareness of the planar space.  If 

the expected utility of (3) – (1) is significantly higher than that of 

(2) – (1), then the space is worth modeling when it is planar and 

proximity-based externalities exist. 

4.2 Results 
We explored the parameter space up to #targets=10, 

#resources=5, and range=0.3 in 0.1 increments.  For each 

combination of parameters, we played 100 games with both 

models, each time redistributing targets uniformly at random from 

[0,0] to [1,1].  There were 120 combinations of parameters tested 

in all.  For all combinations with range>=0.1 and #targets >=4, 

there was a significant increase in defender utility when using the 

Planar model. 

Below, we plot a representative subset of the results in figures 6 

through 11.  “Possible gain” is the maximum possible defender 

utility (associated with defending all targets) minus model (1)’s 

expected utility.  “Utility gain” is the difference in expected 

utilities of (3) - (1) and (2) - (1) respectively. 



 

  

Figure 6: With 5 targets and range 0.1, we compared the mean 

utility gain across 100 trials for the non-planar and planar models 

for 1 through 4 resources.  Using a two-tailed student t-test, we 

found that the planar model significantly outperformed the non-

planar version for all test scenarios (p < 0.05). 

 

  

Figure 7: With 5 targets and range 0.2, we compared the mean 

utility gain across 100 trials for the non-planar and planar models 

with 1 through 4 resources.  Using a two-tailed student t-test, we 

found that the planar model significantly outperformed the non-

planar version for all test scenarios (p < 0.05). 

 

  

Figure 8: With 5 targets and range 0.3, we compared the mean 

utility gain across 100 trials for the non-planar and planar models 

with 1 through 4 resources.  Using a two-tailed student t-test, we 

found that the planar model significantly outperformed the non-

planar version for all test scenarios (p < 0.05). 

 

  

Figure 9: With 10 targets and range 0.1, we compared the mean 

utility gain across 100 trials for the non-planar and planar models 

with 1 through 5 resources.  Using a two-tailed student t-test, we 

found that the planar model significantly outperformed the non-

planar version for all test scenarios (p < 0.05). 

 

  

Figure 10: For 5 targets and range 0.1, we compared the mean 

utility gain for the non-planar and planar models with 1 through 5 

resources.  Using a two-tailed student t-test, we found that the 

planar model significantly outperformed the non-planar version 

for all test scenarios (p < 0.05). 

 

 

Figure 11: With 10 targets and range 0.3, we compared the mean 

utility gain across 100 trials for the non-planar and planar models 

with 1 through 5 resources.  Using a two-tailed student t-test, we 

found that the planar model significantly outperformed the non-

planar version for all test scenarios (p < 0.05). 



Overall, our planar model reaps significantly more benefits from 

proximity-based externalities than Gan’s model, assuming that the 

space is in fact planar.  

In trivial scenarios, where the number of defense resources is no 

less than the number of targets, all three models naturally perform 

the same.  Unsuprisingly, in relatively easy scenarios, where the 

number of resources is high and resources have long range, Gan’s 

model perfoms almost as well as ours; Clearly, as range 

approaches world size, Gan’s model becomes equivalent to ours. 

It seems that in harder defense scenarios, where the number of 

resources is small compared to the number of targers, and where 

the range of each resource is small compared to the world size, 

our model gets ~1.5-2 times the benefit from externalites as Gan’s 

model. 

5.  RELATED WORK 
Game theory in its present form was originally presented by von 

Neumann in his 1928 paper. Although most closely tied to 

economics, almost since its inception game theory has been 

applied to security problems, most famously during the 1950s to 

model global nuclear strategy. Also during the 1950s, Nash 

famously developed a criterion for mutual consistency of players’ 

strategies in non-cooperative games, known as the Nash 

equilibrium [Wiki].  This sparked great interest in the field as 

many research groups extended the models, defining for example 

repeated and extensive form games, and applied them to new 

areas. 

More recently, thanks to increased computational power and new, 

efficient algorithms, it has become practical to use Stackelberg 

games to model real-world security problems.  Because it seems 

natural to assume that the attacker conducts surveillance, 

Stackelberg games became more popular for such problems than 

models in which both players act simultaneously.  One of the key 

revitalizing papers was Brown et al., 2006 [Brown 06] in which 

they argue that critical infrastructure defense must become more 

sophisticated to be adequately protect against terrorist attacks.  

They advocate the use of optimization models, in particular, the 

Stackelberg model, as a way to model attackers and defenders to 

develop a robust protection system. Real world applications 

include the ARMOR security system deployed at the Los Angeles 

International Airport [Pita, 2008] and the IRIS system deployed 

by the Federal Air Marshals Service to allocate marshals to tours 

of duty to protect commercial flights [Jain, 2010]. 

Gan et al. [Gan] term games in which one defense resource can 

defend multiple nearby targets Security Games with Protection 

Externalities (SPEs).  They use the term externality because each 

resource is assigned to one primary target, and may defend other 

nearby targets, as a bonus.  They show that finding Stackelberg 

equilibria in such games is NP-hard.  Nevertheless, they show that 

polynomial approximations perform better than ignorant solutions 

when proximity-based protection externalities exist.   

Fang et al. [Fang 2013] and Xu et al. [Xu 2014] did not call the 

effect an externality, but studied patrol paths on the real number 

line with moving targets, where a defense resource had an 

effective range.  Because a defense resource was not bound to a 

particular target, but was instead constrained to a particular metric 

space, this work is in some senses more similar to our own than 

Gan’s. 

6. CONCLUSIONS 

6.1 Summary 
We are interested in game theoretical approaches to the allocation 

of resources to the defense targets – so-called security games. We 

were inspired by Gan’s model of security games, which 

incorporates protection externalities.  We introduce our planar, 

maximal clique model for allocating defender resources to protect 

targets.  Our version extends the protection externalities described 

by Gan to allow for resource locations other than at target 

locations. To solve this problem we have defined a metric space 

for the game world, in our case, a plane, so that we can say that a 

resource defends a target if it is sufficiently close.  Although the 

most natural model is for a resource to defend a disk around itself, 

we compromised by having a resource defend an axis-aligned 

rectangle around itself.  This allows us to find non-dominated 

resource locations quickly, since these correspond to maximal 

cliques in a boxicity 2 graph where each target is an axis-aligned 

rectangle. 

We implemented Gan’s version and ours and evaluated the two 

approaches using the expected utility gains over the externality-

free model.  We tested both models over a range of scenarios, 

varying the numbers of targets and resources from 1 to 10 and 

from 1 to 5, respectively.  Effective resource range was varied 

from 0.1 to 0.3 in increments of 0.1, with all targets placed 

uniformly at random between [0,0] and [1,1].  For each of the 120 

resulting scenarios, utility was calculated using a zero sum Nash 

equilibrium solver. 

We found that a knowledge of the planar space results in 

significant improvements to expected defender solution quality in 

all non-trivial scenarios where the number of targets >=4 and 

range >= 0.1.   

6.2 Future Work 
There is a fundamental tradeoff between the number of actions 

considered and the time to solve the resulting game.  Because the 

solution to the SPE corresponds to a set covering, each target 

should be defended by at least one action to allow for a good 

solution.  In this project, we simply considered all O(n2) maximal 

cliques, but more practically a O(n) subset should be considered 

so that the resulting game takes no longer to solve. 

What makes a selection of maximal cliques good?  That is, what 

actions should be added first when attempting to allow for good 

solutions to the game?  There are a number of natural heuristics 

one might consider.  One could greedily add the largest maximal 

cliques to the set of actions.  One could greedily add the action 

that protects the most as-yet-unprotectable targets.  One could 

imagine more sophisticated algorithms searching for a set of 

actions with backtracking.  This may merit significant further 

work. 

Although the exponential running time of our boxicity 2 maximal 

clique finding algorithm itself did not matter for the purposes of 

our tests, since the game was of exponential size, it may matter 

when used with a polynomial, approximate game solving 

algorithm such as CLASPE.  For this reason, it may be 

worthwhile to develop faster boxicity 2 maximal clique finding 

algorithms.  Using the general result from [Tsukiyama], we see 

that there exists a O(n3m) algorithm.  We suspect that a 

O(n2log(n)) algorithm exists that uses a sweep line.  Since a 

boxicity 2 graph may have O(n2) maximal cliques, O(n2) is the 

fastest we could hope for. 



Polynomial algorithms may even exist to find all maximal cliques 

in a unit disk graph that obey the Helly property; that is, it may be 

possible to find not just a subset of D but all of D - this would 

allow for truly optimal solutions in the sense that the expected 

utility of the defender in the solved, resultant game would be 

maximized.  If such an algorithm existed, the authors of this 

report suspect that it would fall in the area of computational 

geometry, not graph theory. 

Finally, metric spaces other than a plane could be considered. 
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