
Animation Generation with a Low-Dimensional
Simplicial Complex

1st Brian Gauch
EECS

Vanderbilt University
Nashville, TN

brian.gauch@vanderbilt.edu

2nd Alan Peters
EECS

Vanderbilt University
Nashville, TN

alan.peters@vanderbilt.edu

Abstract—Given motion capture training data, we control an
animated character by reducing the dimensionality of the pose
space, finding a simplicial complex using Delaunay triangulation,
creating a motion graph using the simplicial complex, and then
using the motion graph and simplicial complex for distance esti-
mates and interpolation respectively. Using a simple pathfinding
algorithm, we compare the above model to a simpler model where
k-NN is use to induce a motion graph and interpolate.

Index Terms—animation, motion graph, manifold, Delaunay
triangulation, simplicial complex

I. INTRODUCTION

Realistic animation of human motion is of crucial im-
portance to the film and video game industries, and has
applications elsewhere such as robotics and biomechanics. An-
imation of human motion is particularly challenging because
the models have a fairly large number of joints and because
viewers can easily detect unrealistic motions. Due to these
difficulties, this area has received much research attention
within Computer Graphics [1] [2].

When creating animations, a large portion of artist effort is
put into so-called “inbetweening”, where start and end poses
are known and the frames in between need to be generated.
This has been an important area of Computer Graphics for
some time [3]. At its most basic, inbetweening can be done
with a linear interpolation, but these kinematic models do
not lead to very realistic motions. More recently, animators
incorporate a dynamics model that may be learned from
motion capture [4].

Our goal is to generate realistic human motion animations
given a small number of artist-generated or motion captured
training motions. To do this we synthesize the intermediate
skeletal positions by blending neighboring motions. Unlike the
distance metric approaches used by some algorithms to find
neighboring points in the state space, e.g. k-NN, we consider
two poses to be neighbors if they are both vertices of the same
simplex of the Delaunay triangulation.

II. RELATED WORK

A. Dimensionality Reduction

1) Dimensionality Reduction Motivation: There has been
significant prior work in modeling and generating motions, on
which our work builds. Many motion modeling algorithms’

speeds depend not only on the number of data points n, but
also on the dimensionality of the state space. Examples of
areas in which dimensionality is critical include clustering,
modeling and controlling a dynamical system, and machine
learning. While adding dimensions to the input data ideally
provides useful information, the reduction in speed associated
with higher dimensionality is typically referred to as the “curse
of dimensionality”. This creates a temptation to hand pick the
input features, limiting them to those that seem likely to be
important in some sense. Dimensionality reduction techniques
aim to eliminate the need for hand-picking features, by pre-
processing input data and selecting those dimensions which are
deemed important programmatically. These new dimensions
need not be (and indeed, rarely are) a subset of the original
dimensions. Classical techniques like Principle Component
Analysis limit new features to be linear combinations of input
features, but many newer techniques do not.

2) Dimensionality Reduction Methods: Perhaps the best
known dimensionality reduction technique is Principle Com-
ponent Analysis [5] (PCA), because it was among the first
dimensionality reduction methods, and is still one of the
fastest. While naı̈ve PCA is O(n3 +D3), it may be as fast as
O(ndD) where D is the dimensionality of the data space and
d is the dimensionality of the latent space [6]. Most other com-
mon dimensionality reduction methods like Multi-Dimensional
Scaling [7] (MDS), ISOMAP [8], local linear embedding [9]
(LLE), and Laplacian eigenmaps [10] are O(n3) because they
involve an eigendecomposition of an n-by-n matrix [11] [12].
Other methods include local tangent space alignment [13],
Gaussian Process Latent Variable Models (GPLVM) [14], and
Gaussian Process Dynamical Models (GPDM) [15].

B. Motion Models

Regardless of how we reduce dimensionality, the key to
animation generation is the motion model. In general we
may wish to allow exaggerated or cartoony physics [16].
Some human motion tracking algorithms compute a max-
imum likelihood estimator (MLE) of the next pose given
a sequence of prior poses. Because our work focuses on
animation generation, we are interested in the probabilities of
pose sequences. Some animation generation algorithms build
motion models from a discrete graphical representation of



training data. Arikan et al. [17] give a good introduction to
motion graph models and how to generate animations from
them. The model is then augmented by adding edges to the
motion graph, G, interpolating between nodes to create new
nodes, or both. Ren et al. [18] add edges to G to minimize
the lengths of shortest paths, and ask the user to verify the
quality of resulting animations periodically. Zhao et al. [19]
interpolate between whole sequences at a time, to produce a
set of candidate nodes and edges. They then use a threshold
based on dynamical probability to determine which to add to
G. Levine et al. [20] also add nodes and edges to G. They
simulate many user inputs when creating their controller, and
create new nodes in regions that are frequently traveled. They
add edges such that each node is connected to its k-NN in the
latent space.

1) Motion interpolation and generation: Motion interpola-
tion can be done while each training sequence is considered
separately, by e.g., finding a smooth function that passes
through each of the training data points. Motion blending
means interpolating between two or more training sequences,
e.g., creating a sequence that is a piecewise linear combination
of two training sequences. Shin et al. [21] do motion blending
in the latent spaces derived by various dimensionality reduc-
tion methods.

a) : Motion interpolation and motion blending are both
relevant to animation in the film industry, but in the video game
industry there is more interest in animations as a function of
pose and user control signal. Such a policy is called a character
controller. A controller should cause the character to respond
quickly to a change of control signal. However, searching the
motion graph for candidate responses to the control signal [17]
and evaluating both the motion quality and control quality [22]
of each candidate motion is generally too slow. Therefore,
significant precomputation is usually needed to achieve the
desired runtime speed, so that at runtime the controller does
little more than a table lookup. Note that the size of the space
of control signals must be small for the creation of such a table
to be feasible. Typically the control signal is one direction
(e.g., walking direction) or the location of the “end effector”,
i.e. one joint of interest, e.g., a hand. Control of an end effector
is the well-studied problem of inverse kinematics, used in
robotics. Agrawal and van de Panne [23] presented a method
to get foot positions from higher-level task-specific plans, then
use those foot positions to generate a complete animation.

b) : There is a tradeoff in the creation of a motion
graph for an animation or character controller between motion
quality and control quality [22]. If control quality is to be
emphasized, as Mccann et al. suggest for the case of video
game character control [22], then many edges should be added
to the motion graph. If motion quality is to be emphasized,
then the motion graph should only have a few, high-quality
edges beyond the edges in the training data. The tradeoff
typically takes the form of a threshold for edge motion quality.

c) : Given a motion graph G, creating a controller can be
relatively simple. A separate Markov Decision Process (MDP)
is applied to G for every possible control signal, or for a

dense sampling of possible control signals if there is a distance
metric in the control space. Mccann et al. [22] compare a MDP
controller to other simpler, faster controllers.

d) : Levine et al. [20] also use an MDP-based controller.
After the expected rewards of the MDP have finished prop-
agating on the finite G, Their algorithm interpolates reward
between nodes, allowing their controller to go to points in the
latent space which are not on G.

C. Manifold reconstruction

1) n-Dimensional Delaunay Triangulation: In the motion
models above, candidate edges for G are typically found using
a distance metric, whether in the original space or in the latent
space. Similarly, neighbors for interpolation can be found via
k-NN. We instead use a simplicial complex [24], where each
simplex can be thought of as a neighborhood. We find a
simplicial complex using Delaunay triangulation.

Delaunay triangulations were originally defined in [25]. We
first consider the Delaunay triangulation of a set of points in
a two-dimensional space. We are interested in the following
properties:

1) Given a set of two-dimensional points, a Delaunay trian-
gulation is a set of triangles that covers the region in the
plane bounded by the convex hull of the points.

2) The set of triangle vertices and the set of input points are
equal.

3) Among the coverings that satisfy the two above condi-
tions, a Delaunay triangulation is a covering that maxi-
mizes the minimum interior angle of its triangles.

This last property makes the Delaunay triangulation unique
(i.e., it does not depend on the order of input points) under
certain assumptions. Delaunay “triangulation” is a bit of a
misnomer when it is generalized to higher dimensions, in
which case a Delaunay triangulation produces a simplicial
complex [26]. Variations of Delaunay triangulations have been
used in Computer Graphics to generate triangular meshes
[27] [28], from sets of points [29]. More recently, Delaunay
triangulations have been used in manifold learning [30] [31].

III. APPROACH

Our approach to generating animations that start at an
arbitrary point a in the pose space comprises the following
steps.
(a) Reduce the dimensionality of the pose space to produce a

lower-dimensional latent space. Project point a from the
latent space to point a′ in the latent space.

(b) Create a graph of the training data in the latent space
using either k-NN or Delaunay triangulation.

(c) Use the graph to define a neighborhood function over the
latent space.

(d) Find the vectors in the latent space which are projected
directional derivatives of the training data.

(e) Interpolate the latent vectors to define a vector field.
(f) Find a path as follows: Sample the vector field at a′, move

with the same direction and magnitude as that vector, and



sample the vector field at that new location. Continue
until the stopping condition is reached.

(g) Reproject the path from the latent space back into the
pose space, where it the result should resemble the
original training animations.

A. Dimensionality Reduction

We use PCA for dimensionality reduction because it is fast,
and because it is straightforward to reproject back into to pose
space where we eventually want to see our animations.

B. Motion Graph

We use a collection of training sequences to define our
motion graph G. The first step is to add nodes and directed
edges corresponding to each of the “clips” in our training
data. We then extend this graph by finding the Delaunay
triangulation of these nodes, or by adding edges using k-NN.

We have implemented n-dimensional Delaunay triangulation
using the algorithm described by Watson [26]. One step of
Watson’s algorithm (step B) is to find the circumspheres of
new simplices; However Watson does not go into detail about
how this done. We solved this subproblem using an algorithm
described by Daly [32]. We generalize their “Center of Cir-
cumscribed Sphere” algorithm to d dimensions. However, for
the results presented in this paper, we always reduce dimension
to 2, so a simpler implementation of Delaunay triangulation
which only works for 2 dimensions would have sufficed.

Using k-NN, we add an undirected edge between points p1
and p2 if p2 is one of p1’s k nearest neighbors or vice versa.
Using the Delaunay triangulation, there is an undirected edge
between points p1 and p2 if there is at least one simplex of
the Delaunay triangulation such that p1 and p2 are vertices of
that simplex.

The next step is to direct the edges added by Delaunay or
k-NN so the edge points in roughly the same direction as the
training data. To do this, consider an undirected edge between
training data points p1 and p2, with associated velocities v1
and v2. Let vtarget = (v1+v2)

2 represent a vector that is in
the desired direction. Take the dot product of vtarget with
the vectors (p2-p1) and (p1-p2). Keep whichever edge has
a positive dot product with vtarget. We call the resulting
directed graphs G′Delaunay and G′k−NN , or simply G′ when
the method of adding edges need not be specified. Examples
of G′k−NN and G′Delaunay can be seen in Figure 1 and Figure
2 respectively.

Ideally, we would like to be able to find a transition from any
animation frame in the training data to any other. Since such
a transition amounts to a path on G′, all pairwise graphical
distances need to be calculated, which requires that G′ be a
single connected component.

If G′ instead has undirected edges, The graph G′Delaunay
induced by the Delaunay triangulation would be a single
connected component, because the simplices of a Delaunay
triangulation cover the convex hull of the training data.
G′Delaunay has O(n · d) edges where d is the dimensionality
of the latent space. The graph G′k−NN induced by k-NN is

Fig. 1. Three folds of training data (red) and resulting edges of G′k−NN
(blue).

Fig. 2. Three folds of training data (red) and resulting edges of G′Delaunay
(blue).

not necessarily a single connected component for k ≤ n−1
2 .

To see this, consider the case where our data is divided into
two distinct clusters, where the distance between the clusters
greater than the distance between any two members of the
same cluster. Some algorithms using k-NN get around this
issue by adding edges to connect the graph [33].

If G′ has directed edges then it has a single component
only if its undirected version is likewise one component. For
the directed graph to be connected, we also need the data to
be cyclical. More precisely, we need the following: Consider
the set of time series T1, T2, ..., Tτ that make up X . Consider
the directed bipartite graph H such that for each Ti there is
a node in the left set of H corresponding to the first element
of Ti and a node in the right set of H corresponding to the
last element of Ti. Let there be an edge from a to b in H iff
there is a path from a to b in G′. Note that this implies an
edge from the beginning of each Ti to its end. Then we claim
that G′ has a single connected component iff H has a single
connected component.

Proof: Suppose H is connected (i.e., has a single connected
component) and G′ has at least two connected components.
Then there is some pair of nodes a, b ∈ G′ such that there is
no path from a to b. Let a ∈ Ta, b ∈ Tb. Because G′ includes
a path graph for each Ti, ∀t ∈ Ti there is a path in G′ from
t to the tF , the last element of Ti. ∀t ∈ Ti there is a path in
G′ from t0, the first element of Ti, to t. Therefore, there is a



path in G′ from a to the aF , last element of Ta, and there is
a path in G′ from b0, the first element of Tb, to t. Because H
is connected, there is a path in H from aF to b0. Because the
edges of H are a subset of the transitive edges of G′, there
is a path between nodes in H only if there is a path between
those nodes in G′. Therefore, there is a path in G′ from aF
to b0. Finally, there is a path from a to b: a→ aF → b0 → b.
This is a contradiction to our assumption that G′ has at least
two connected components. Therefore, H connected implies
G′ is also connected.

To make the data more cyclical, we remove the root
coordinates from the motion capture data, so that, e.g., a walk
cycle stays in place. That is, we expect H to have more edges
if each time series ends close to where it starts. However,
removing the root coordinates does not guarantee that H is
connected.

C. Neighborhoods

After constructing G′, the next step is to use it to define a
function which, given a latent point, returns a set of neighbors
which are elements of G′. Within each neighborhood we treat
a point as a weighted combination of its neighbors.

For G′k−NN , the neighborhood of a point is the k-NN of that
point. For G′Delaunay , the neighborhood of a point is the set of
vertices of its containing simplex. In the case of G′Delaunay ,
the neighborhoods returned by the neighborhood function form
a topology. Specifically, the simplicial complex returned by
Delaunay triangulation is the “geometric realization” [34] of
an abstract simplicial complex, which has a topology. oNote
that for G′Delaunay, this function is only defined over the
convex hull of the training data. To calculate weights within a
neighborhood, we use inverse distance weighting. Specifically,
we calculate the Euclidean distances from an arbitrary point p
to the N points in the neighborhood, and the weight for each
neighbor is given by 1/D2 normalized such that weights sum
to 1.

If we use G′Delaunay , our neighborhood function has dis-
continuities along the boundaries between simplices. If we
use G′k−NN , our neighborhood function has discontinuities
along the boundaries between the cells of the corresponding
kth-order Voronoi diagram [35]. In general, we expect the
neighborhood function induced by G′k−NN to have more dis-
continuities, but we expect the discontinuities in the neighbor-
hood function induced by G′Delaunay to be more pronounced,
because with fewer neighbors, the weight of the neighbor
being dropped in the distance-weighted interpolation is usually
higher.

D. Training Data Vectors

The next step is to use the training data to generate a vector
field so new motions can be estimated and generated, We start
by associating a vector vxi

with each training data point xi
in a time series X , which is a discrete approximation of the
derivative of X at that point. We use the following: vxi

=
xi+1−xi

2 where xi+1 exists and vxi
= xi−xi−1

2 where it does
not (at the end of a time series).

Fig. 3. Vector field generated by creating vectors from consecutive pairs in
the training data and interpolating using k-NN.

Fig. 4. Vector field generated by creating vectors from consecutive pairs in
the training data and interpolating using the Delaunay triangulation.

E. Vector Field

We then use the neighborhood function and local weights to
interpolate among these vectors, creating a vector field which
is defined wherever the neighborhood function is defined. See
Figure 3 and Figure 4 for visualizations of the vector fields
induced by k-NN and the Delaunay triangulation respectively,
applied to toy data.

F. Finding Paths

Following our vector field should produce plausible ani-
mations, as long as we stay near our training data. That is,
we sample the vector field, move according to that vector,
and sample again at the new location until we are satisfied
with the length of the path. See Figure 5 and Figure 6 for
paths/animations found in the low-dimensional latent space
using k-NN and the Delaunay triangulation respectively.

G. Reprojecting

Our last step is to move from the latent space back to
the pose space. To do this, we essentially undo PCA, albeit
with some amount of data loss which depends on how many
dimensions we reduced to and whether the original dimensions
were linear combinations of one another. Because PCA works
by applying a matrix transform, we can simply take the inverse
of that transform and apply it. See Figure 7 for a generated



Fig. 5. The original path, which was not used for training (red) and the path
found using G′k−NN (blue).

Fig. 6. The original path, which was not used for training (red) and the path
found using G′Delaunay (blue).

walking animation reprojected back into the original data
space, where animations are much prettier.

IV. EVALUATION

In order to compare the abilities of the G′k−NN and
G′Delaunay models at finding new, plausible animations, we
perform a cross-fold validation of sorts.

Fig. 7. Walking animation generated by reprojecting a motion found by
following the vector field induced by G′Delaunay .

TABLE I
DETAILS OF THE TEST SETS.

Dataset # Dim # Seq Sequence Lengths Total # Nodes
w1 56 4 443 360 455 454 1712
w2 56 4 347 520 269 282 1418
r1 56 4 167 167 175 160 669
r2 56 4 258 139 200 163 760

A. Data sets and Metrics

We use data from CMU Graphics Lab Motion Capture
Database, a collection of motion capture data. In particular,
we collected 16 time series and broke them into four subsets,
each containing four related time series. Two were labeled
walking (w1 and w2), and two were labeled running (r1 and
r2); w2 and r2 include turning behavior. More details about
the sequences used appear in Table I.

We define two metrics to evaluate the similarity of a
generated animation to a “true” animation, assuming that
both animations share the same starting point. Error F is the
distance from the generated animation to the final point of
the true animation during the closest approach. Error A is
the average distance from the true animation to the (closest
point on the) generated animation, and vice versa, i.e., average
distance from the generated animation to the (closest point on
the) true animation. Error A is intuitively similar to the area
between the two curves.

B. Experimental design

Our cross-fold validation of animations works as follows:
For each of our four subsets, we train on all but one of the
sequences (three sequences) to learn G′k−NN and G′Delaunay
and the corresponding and vector fields. We then generate a
path in the latent space by starting at the same point as the
fold that was left out of training and following the vector field.
On the rare occasion that our path takes us outside of the
convex hull of the training data, and the vector field induced
by Delaunay triangulation is therefore undefined, we use k-
NN as a fallback. Finally, for each subset, for each method
(Delaunay or k-NN), for each of the four folds, we measure
Error A and Error F of the generated path where the left out
fold is consider the true animation.

C. Results

Table II shows the results of our experiments. It reports
the medians of both metrics from each of the 4-fold cross-
validations. You can see that the G′Delaunay model gave better
results than G′k−NN overall, with medians of 0.068 vs 0.079
(Error A) and 0.041 vs 0.042 (Error F) across all subsets.
G′Delaunay also performed better than G′k−NN within five of
the eight combinations of subset and metric.

V. DISCUSSION

We present a new method of creating a motion graph from
motion capture data, based on Delaunay triangulation. Our
method first finds the Delaunay triangulation of the training
data points, then defines a vector field over the convex hull



TABLE II
MEDIAN ACCURACY OF DELAUNAY VS K-NN ON 4 DATASETS USING TWO

DIFFERENT METRICS, ERROR A AND ERROR F.

w1 w2 r1 r2 all data

Error A Delaunay 0.023 0.073 0.749 0.068 0.068
k-NN (k=16) 0.022 0.105 0.099 0.118 0.079

Error F Delaunay 0.02 0.043 0.038 0.067 0.041
k-NN (k=16) 0.057 0.114 0.044 0.024 0.042

of the training data by interpolating among vertices of the
containing simplex.

Finally, given a start point, it generates an animation by
following the vector field. Our experiments showed that our
approach outperformed k-NN, as measured by Error A and
Error F.

A. Future Work

In future, we plan to extend our Delaunay triangula-
tion method to higher dimensions, and to investigate better
pathfinding methods. In particular, we are interested in the
use of all-pairs shortest paths to find paths towards some target
point, such as the final point of a fold in cross-fold validation.
We also plan to consider combining the k-NN and Delaunay
models, perhaps by defining the neighborhood of k-Delaunay
to be the union of the neighborhoods of Delaunay and k-NN.
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