
Estimation of Intrinsic Dimension of Time Series

Data

Brian Gauch
Vanderbilt University, TN

November 6, 2017

Abstract

We survey intrinsic dimensionality estimation techniques and dimen-
sionality reduction techinques for time series data. We propose a novel
intrinsic dimensionality reduction technique which exploits the temporal
information implicit in time series data.

Part I

Motivation
Learning in a high-dimension space is slow, which is where manifold learning
comes in. However, depending on how fancy the manifold learning algorithm is,
even the manifold learning can be slow! Furthermore, several manifold learning
algorithms have as an input parameter the target dimension, which is difficult
to know in advance, meaning that you might need to run the manifold learning
algorithm over and over again with different parameter values for the target di-
mension. Therefore, it is desirable to have another step before manifold learning;
Estimation of intrinsic dimension.

Finally, even if you don’t care about how long it takes to search the parameter
space of a manifold learning algorithm, intrinsic dimension estimators can be
useful for showing the validity of a low-dimensional model.

1



Part II

Background

1 Manifold Learning

In manifold learning we start with finite, high-dimensional data, i.e.,

{x1, x2, ..., xn} = X ∈ RD

and assume that the data was generated by some lower-dimensional process.
If our assumption that our data was generated by a lower-dimensional pro-

cess is correct, then our high-dimensional data should fit on a lower-dimensional
manifold which is a subset of RD.

We should therefore use the metric of the manifold instead of metric of the
RD space it is embedded in.

We therefore learn a projection from this high-dimensional “data space” to
a lower-dimensional “latent space”, i.e.,

f(a ∈ RD) = b ∈ Rd.

1.1 Inverses

Depending on the problem we are using manifold learning for, we may also want
an inverse function f−1. f may not be one-to-one, so in general no such inverse
function is guaranteed to exist. In fact, for f to be one-to-one, it would have
to be like a space-filling curve, so it would not be smooth, and we would need
more bits per dimension in the latent space (for the same total number of bits).

More general notions of inverse functions exist, which suit our purposes. We
call a function g the right inverse of f if

f(g(x)) = x, ∀x in the domain of g.

We call g the left inverse of f if

g(f(x)) = x,∀x in the domain of f.

So, instead of f−1, let us define the next best thing, a function g

g(b ∈ Rd) = a ∈ RD

which is the right inverse of f, ∀b ∈ Rd.
g should also be the left inverse of f if the domain of f is restricted to the

manifold. However, we will not apply any such restriction.
Because we refer to the application of f as a “projection” onto the latent

space, we refer to the application of g as a “reprojection” onto the data space.

2



Depending on the manifold learning technique used, we may not be able to
find g exactly. Call whatever function we actually use to reproject from the
latent space to the data space h

h(b ∈ Rd) = a ∈ RD.

Let Y = f(X).

Depending on the manifold learning technique, f and h may or may not
have their domains restricted, so that instead of RD and Rd respectively, they
may be, e.g., X and Y respectively.

However, depending on the application, we may need the domains to be
unrestricted. For example, we may need f to be unrestricted if we expect more
data to appear (perhaps for classification) after the model is built. We may
need h to be unrestricted if we plan to learn something (such as cluster means)
in the latent space and then reproject our findings back onto the data space.

1.2 Reprojection

Even if a dimensionality reduction technique only explicitly defines

f(X) = Y

we can easily construct
h(Y ) = X.

Less trivially, we can expand the domains of f and h to RD and Rd respectively.
Below we show how to expand the domain of f . The same procedure can be
followed to expand the domain of h.

One way to expand the domain of f , which is relatively fast, is to interpolate
using k-nearest neighbors (k-NN). Using this method, if we want to find

b = f(a /∈ X),

we first find the k-NN of a, and call it V . We then use some weighting scheme to
associate a weight with each element v of the k-NN of a (perhaps wv = 1

‖a−v‖ ).

We then normalize the weights W so that they sum to 1. Finally, we say that

b = f(a /∈ X) =

V∑
v

wv · f(v).

Therefore, moving forward, we say without loss of generality that f and h have
domains of RD and Rd respectively.

3



1.2.1 Reprojection Error

Recall that h ≈ g.
Let right reprojection error be defined as follows:

RER(b ∈ Rd) = ‖b− f(h(b))‖.

Because this essentially measures the error in the right inverse, RER tells us
how far off h is from g. Depending on the manifold learning technique, we may
or may not assume that RER = 0∀b ∈ Rd.

Let left reprojection error (usually referred to as simply “reprojection error”,
because right reprojection error is not often a concern) be defined as follows:

REL(a ∈ RD) = ‖a− h(f(a))‖.

Because this essentially measures the error in the left inverse, and g is only the
(zero-error) left inverse of f within the domain of the learned manifold, the
reprojection error will be nonzero for any data not on the learned manifold. In
fact, reprojection error can be considered a metric of distance from a to the
manifold.

In some cases we wish to know the reprojection error associated with a latent
point. In this case, we say that

REL(b ∈ Rd) = ‖h(b)− h(f(h(b)))‖.

When we say that a projection of data X into a lower-dimensional space is
lossless, what we mean is that REL(x) = 0,∀x ∈ X.

2 Intrinsic Dimension

2.1 Definition of Intrinsic Dimension

Before we continue, we should clear up any confusion surrounding the term
“intrinsic dimension” (ID). This term is used within the context of manifold
learning, and is, informally, the dimension of the low-dimensional process which
we believe generates our data. Therefore, we will not be able to project losslessly
onto a latent space of dimension d < ID.

Although the term “intrinsic dimension” is useful for expressing our belief
that some such number of dimensions exists, we have not found a definition that
gives us a good way to actually find such a number.

Certainly, if we are able to losslessly project high-dimensional data X onto
d dimensions, then we can say after the fact that X has ID ≤ d. Therefore,
any manifold learning algorithm can be used to estimate intrinsic dimension, in
the sense of providing an upper bound to ID, i.e., ID ≤ d where dlossless is the
lowest dimension that the manifold learning algorithm is able to project onto
losslessly. In most cases, finding such a dlossless requires running the manifold
learning algorithm multiple times, each time giving it a different target d value

4



as a parameter. when reducing to dimension d. Therefore, this approach is
only viable if the underlying manifold learning algorithm is fast and/or does
not take a target dimension d as a parameter. Camastra and Staiano refer to
these intrinsic dimension estimators as “projection methods”, and notably only
mentions fast dimensionality reduction algorithms like PCA and MDS.

So, although we can find ID using the same projection we plan to use for di-
mensionality reduction, we would much prefer to have an estimate of ID before

any computationally expensive operations like finding such a projection.
Furthermore, while we use a projection method to find an upper bound of

ID, it is unclear how to establish a lower bound of ID. If we find a projection
which is not lossless, it could either be because we tried to project onto too few
dimensions, or it might be because the dimensionality reduction technique we
used was inappropriate for the data (e.g., the data has nonlinear relationships,
but we are only able to find linear ones).

Perhaps because of these problems, “intrinsic dimension” is commonly equated
to one of the following, more well-defined definitions of dimension:

• Hausdorff dimension[1]

• Toplogical dimension, i.e., Lebesgue covering dimension[2]

• Information dimension[3]

Topological dimension is a lower bound on Hausdorff dimension, because
the Hausdorff dimension of a fractal is a non-integer. Otherwise, topological
dimension and Hausdorff dimension agree where they are both defined. As
an example, the Serpinski triangle has topological dimension 1, but Hausdorff
dimension log2(3) ≈ 1.585.

Information dimension is defined over a probability measure rather than sets,
but we can easily construct a probability measure from finite training data by
giving each of our n training points probabily 1

n .
Our training data is a finite subset of RD, and for each of the above defini-

tions of dimension, the dimension of any finite set is 0. We therefore have to use
an approximation of one the three above definitions rather than applying them
directly. However, because the differences between the three above definitions
are subtle, an approximation of one is an approximation of them all. This may
be the reason why there does not seem to be agreement in the literature about
the exact definition of “intrinsic dimension”.

Camastra and Staiana[4] argue the following, where ≈ denotes “approxi-
mates”:

intrinsic dimension = Hausdorff dimension

≤ box counting dimension ≥ correlation dimension

Whereas Granata and Carnevale[5] argue the following:

intrinsic dimension = topological dimension ≈ Hausdorff dimension

≈ box counting dimension ≥ correlation dimension

5



At least, Camastra and Staiano[4] seem to imply that intrinsic dimension is
Hausdorff dimension. In any case, the rest of their paper[4] surveys related work
on the estimation of Hausdorff dimension and information dimension, rather
than ways to directly estimate intrinsic dimension. Estimation of topological
dimension is also explored, but seemingly only because topological dimension is
a lower bound of Hausdorff dimension.

We choose to define intrinsic dimension to be Hausdorff dimension because
this should be more accurate than topological dimension if the data has a fractal
nature.

Part III

Estimation of Intrinsic Dimension

3 The Ideal Intrinsic Dimension Estimator

Camastra and Staiano[4] define five criteria of an “ideal ID estimator”. An ideal
ID estimator should:

1. “Be computationally feasible”.

2. Allow “multiscaling”. I.e., accept as a parameter the scale we are inter-
ested in, so that information on a smaller scale is treated as noise and
ignored.

3. “Be robust to ... high dimensionality”.

4. “Have a work envelope (or operative range).”

5. “Be accurate, i.e. give an ID estimate close to the underlying manifold
dimensionality”

These critera are based on Pestov’s[6], with the notable omission of the
requirement that an ideal ID estimator should “make no distinction between
continuous and discrete objects, and the intrinsic dimension of a discrete sample
should be close to that of the underlying manifold”[6]. While the first half of
this requirement seems ambiguous, we can interpret the second half as follows:
As we keep sampling the same manifold, our estimate of the dimension of that
manifold should approach some number, which we can then call the ID of that
manifold. I.e.,

∃ ID∗ ≥ 0 s.t. lim
‖X‖→∞

ID(X) = ID∗.

This seems worthwhile to include as a criterion.
A possible alternative to Camastra and Staiano’s[4] criterion 2 is to simply

require that an ideal ID estimator be robust to noise. This would allow an
ideal ID estimator to find the scale of noise itself, instead of accepting scale as
a parameter.

6



More importantly, Camastra and Staiano’s[4] criterion 3 seems overly specific
about how an ideal ID estimator should present its uncertainty. The idea of a
“work envelope” is that the output of sensor, or in this case the output of the
ID estimator, is guaranteed to be “reliable” within some subset of its domain.
As Camastra and Staiano[4] put it, “The work envelope of an ID estimator is
the minimum cardinality that a data set should have so that the estimator gets
a reliable estimate.”

We propose that instead of necessarily providing a “work envelope”, an ideal
ID estimator should in some way indicate the relationships among:

(a) The number of data points given to the ID estimator as input.

(b) The dimension that the ID estimator returns (it takes more points to
characterize a higher-dimensional manifold).

(c) The accuracy of the returned estimate.

When Camastra and Staiano[4] later describe work envelopes, it becomes
clear that a work envelope is a function of (a) and (b) above, which returns
TRUE if (c) is above some threshold.

Our proposed modification to criterion 3 allows other descriptions of the the
relationships among (a), (b), and (c). For example, a generalized work envelope
function could take in (a) and (b) and return an upper and lower bound on ID
such that the probability that the ID lies in that range is greater than some
threshold.

Our criteria are therefore that an ideal ID estimator should:

1. Be computationally feasible.

2. Be robust to noise.

3. Be robust to high dimensionality.

4. Indicate the relationships among:

(a) The number of data points given to the ID estimator as input.

(b) The dimension that the ID estimator returns (it takes more points
to characterize a higher-dimensional manifold).

(c) The accuracy of the returned estimate.

5. Be accurate.

6.
∃ ID∗ ≥ 0 s.t. lim

‖X‖→∞
ID(X) = ID∗.

7



Part IV

Intrinsic Dimension Estimators

4 Projection Methods

See section 2.1. In short, every dimensionality reduction algorithm can be posed
as a manifold learning algorithm, and every manifold learning algorithm can be
used as a projection method to find ID, but may be slow. The category of ID es-
timators which Camastra and Staiano[4] call “Multidimension scaling methods”
also falls under the category of projection methods, and simply corresponds to
a different category of underlying dimensionality reduction algorithm. Other ID
estimators that Camastra and Staiano[4] mentioned that are members of this
category include Isomap and Brand’s method. In fact, Isomap probably belongs
under “Multidimension scaling methods”.

5 Fractal-based Methods

Fractal dimension can be a non-integer, and is based on the relationship between
the some measure of complexity and the scale at which complexity is measured.
Unfortunately, because we are interested in behaviour at small scales, fractal-
based methods tend (with exceptions[5]) to require too dense a sampling of the
data to be useful.

Mathematical definitions of fractal dimension (meant to be applied to ac-
tual fractals which do not have finite points) include Hausdorff dimension, box-
counting dimension, and correlation dimension. Hausdorff dimension is hard
to estimate[4]. Kégl’s algorithm finds box-counting dimension in O(n2D) time.
There are several algorithms for estimating correlation dimension.

5.1 Correlation Dimension

Correlation dimension is defined as

Dcorr = lim
r→0

lnC(r)

ln r
,

where C(r) can be thought of as the probability of a point xi being within
distance r from another arbitrary point xj . That is,

C(r) = lim
k→∞

2

k(k − 1)

k∑
i=1

k∑
j=i+1

I(‖xj − xi‖ ≤ r)

where I is an indicator function (i.e., it is 1 if condition holds, 0 otherwise).
When estimating the correlation dimension of finite data, typically one plots

values of C(r) and r on a log-log plot, and tries to find the slope of the linear

8



part of the resulting curve near r = 0. This is called the Grassberger-Procaccia
algorithm[7]. Variants of the Grassberger-Procaccia algorithm exist in which
we find multiple linear parts of the log-log plot. This corresponds to finding the
correlation dimension at different scales, and is especially useful when we want
to ignore noise that exists at the smallest scale.

There may be faster ways to calculate C(r) for all values of r, but we note
that if we calculate all pairwise distances, put the distances in a list, and sort
the list, then finding C(r) for a given r is as simple as counting the number of
list elements to the left of the index where r would be inserted. This list takes
O(n2D + n2 log n) time to construct and afterwards finding C(r) for a given r
takes O(log n) time.

5.1.1 Granata and Carnevale

Granata and Carnevale[5] make the following observation: If our data is too
sparse we will find few pairs of points which are close together, giving us a poor
estimate of C(r) for small r values, and no estimate at all for r values smaller
than the distance between the closest pair of points.

Furthermore, it is very likely that our data is sparse due to the high dimen-
sion of the data space and the curse of dimensionality, which is no doubt why
we are estimating the intrinsic dimension and then reducing dimensionality in
the first place! This goes against one of Camastra and Staiano’s[4] five “ideal ID
estimator properties”, namely the 3rd, “be robust to ... high dimensionality”.

Granata and Carnevale[5] go on to show how to estimate correlation dimen-
sion despite this problem, by considering the C(r) values for all values of r
instead of only small ones (as they note, the majority of point pairs are ignored
in the original definition of correlation dimension). In particular, they show
that the shape of the curve in the log-log plot seems to depend more on the di-
mension of the data than it does on the geometry of the manifold, as long as the
manifolds have similar local curvature (e.g., hypercube vs hypersphere). This
property can be used to compare a manifold to reference manifolds of known
dimension, and estimate ID that way.

Finally, Granata and Carnevale[5] define p(r) to be C(r) but using geodesic
distances (i.e., distances between nodes in the graph induced by k-NN) instead of
Euclidean distances, and show that using p(r) instead of C(r) makes the shape
of the log-log plot more regular. This allows comparison between manifolds
with dissimilar local curvature, and, critically, allows them to fit a curve to the
log-log plot of p(r) and r in order to estimate ID (i.e., p(r) at r = 0).

6 Intrinsic Dimension from Size of Minimum
Spanning Tree

Costa and Hero [8] had the novel idea of characterizing dimension by the size
of a minimum spanning tree. This is a promising idea because a MST seems
intuitively to measure the global curvature, and a fractal would have a large

9



MST. Furthermore, minimum spanning trees are relatively fast to construct,
and the size of the minimum spanning tree should depend on all the data, so
we do not expect burdensome requirements on sampling density.

Part V

Dimensionality Reduction of
Time Series
We now adopt some of the terminology used in the discussion of dynamical
systems, in favor of corresponding terms used within the context of manifold
learning. The “phase space” of a dynamical process is analagous to the data
space, and usually consists of position and momentum variables.

We could assume that we have data during some time interval, in which case
we must pick a sampling rate to generate a discrete time series X. However, for
simplicity, we could assume that we are given a discrete time series X of length
n.

More generally, we assume that our time series data X consists of one or
more time series segments (with the indices of the starts and ends of segments
explicitly provided).

We avoid the issue of sampling because choosing a sampling rate is not as
simple as it might seem [9]. If the sampling rate used to construct X is too
high, then we will be biased towards short pairwise distances. Many measures
of dimension, such as correlation dimension, are based on pairwise distaces, so
this could throw them off.

7 Spatio-temporal Isomap

7.1 Multidimensional Scaling

Many prominent dimensionality reduction algorithms incorporate the calcula-
tion of the d largest eigenvalues and their corresponding eigenvectors. There
is a great deal of research on the computation of eigenpairs, much of it itera-
tive in nature. The “Lanczos algorithm”[10] is one such heavily used iterative
algorithm. In general, eigendecomposition is O(n3)[11].

The central idea of Multidimensional Scaling (MDS) is to minimize the aver-
age change in pairwise “dissimilarity” when mapping from the original space to
a lower dimensional one. Classical MDS simply minimizes Euclidean distances,
but the algorithmically similar Metric MDS is a class of techniques correspond-
ing to different definitions of “dissimilarity” where pairwise dissimilarity forms a
metric space. Non-metric MDS also exists for “dissimilarity” matrices which do

10



not correspond to a metric space, although its formulation is somewhat differ-
ent. The critical step in classical and metric MDS is that after a “dissimilarity”
matrix is constructed, we find the d highest eigenvalues of it, and the corre-
sponding eigenvectors. According to Wang[12], “classical MDS [can] be shown
to be equivalent to PCA”.

7.2 Isomap

Isomap is essentially Metric MDS where the metric is geodesic distance. In
particular, a graph is constructed with weighted edges whose weights are equal
to the Euclidean distances, but an edge only exists from v to w if w is one
of v’s k nearest neighbors (k-NN). Recall that k-NN takes O(Dnlog(n)) time
using a k-d tree[13]. All pairwise geodesic distances can then determined graph-
theoretically, by e.g. the Floyd-Warshall algorithm[14], in O(n3) time. We can
see that the O(n3) eigendecomposition corresponding to MDS has no effect on
the final complexity, which is O(n3 +Dnlog(n)), or simply O(n3) if D < n.

7.3 Spatio-temporal Isomap

As far as we are aware, Spatio-temporal Isomap[15] is the only manifold learning
algorithm which incorporates the temporal information implicit in time series
data X. Instead of constructing a graph G where an edge exists from v to w
iff w is one of v’s k nearest neighbors (k-NN), in Spatio-temporal Isomap, we
construct G as follows:

First, we add an edge from v to w if v immediately precedes w in a time
series.

Next, we use a variant of k-NN to add edges from each node v to its spatial
neighbors, like in original Isomap. The variant of k-NN defined by Spatio-
temporal Isomap[15] is called KNTN. KNTN will create at most one edge from
a node v to each other time series. In particular, it selects the shortest among the
possible edges. Furthermore, even if X is only one time series, when finding the
KNTN of v, we temporarily segment the data around v using a hyper-spherical
window centered on v.

Finally, the authors of Spatio-temporal Isomap[15] turn all of these directed
edges into undirected edges (they pose it as treating the relationships as sym-
metric). This is no doubt to ensure that G is fully connected, because Isomap
is only defined on connected components.

8 Dimension of Attractors of Dynamical Sys-
tems

8.1 Lyapunov exponents

Loosely speaking, an attractor of a dynamical system is a subset of the phase
space which the system tends to approach. An attractor can be characterized

11



by its Lyapunov exponents, which can also be used to estimate the dimension
of the attractor. More formally, according to Froehling et al.[16]

The phase space of a dissipative dynamical system can be divided
into regions in which motion is unbounded and regions in which
the motion is attracted into compact subsets. These compact sub-
sets are called attractors, the set of all phase space points which
asymptotically tend to an attractor is called its basin of attraction.
Certain asymptotic properties of a dynamical system’s attractor are
characterized by the attractor’s spectrum of Lyapunov characteristic
exponents (LCEs). There are as many characteristic exponents as
there are dimensions in the phase space of the dynamical system.
The LCEs measure the average rate of exponential convergence of
trajectories onto the attractor when negative, and the average rate
of exponential divergence of nearby trajectories within the attractor
when positive.

Let the Lyapunov exponents be ordered

λ1, > λ2 > ... > λN .

Let j be the largest integer such that

λ1,+...+ λj > 0.

Then the Kaplan-Yorke conjecture[17] states that the dimension of an attractor
is

d = j +

∑j
i=1 λj
−λj+1

.

This can be called the Lyapunov dimension.

9 Estimation of Intrinsic Dimension of Time Se-
ries Data

9.1 Previous Work

Recall that any manifold learning algorithm can be used to estimate intrinsic
dimension, in the sense of providing an upper bound to ID, i.e., ID ≤ dlossless.
Therefore, Spatio-temporal Isomap can be considered an estimator of the in-
trinsic dimension of time series data which exploits the implicit temporal data.

We are not aware of any other previous attempts to estimate the intrinsic
dimension of time series data while exploiting the implicit temporal data. Nat-
urally, because this is a special case of intrinsic dimension estimation, any other
intrinsic dimension estimators can be applied, but one would imagine that the
lack of temporal information would hamper them relative to a intrinsic dimen-
sion estimator which takes advantage of temporal data.

12



9.2 Our Ideas

9.2.1 Using Lyapunov Dimension

We expect the ID of X to be somewhere between the dimension of the attrac-
tor and the dimension of the phase space, inclusive. If our dynamical system
always starts on the attractor, then the ID of X should be the same as the
Lyapunov dimension of the attractor, because all elements of X will remain on
the attractor.

If at least one time series in X does not start on the attractor, we expect
the ID of the X to be greater than the Lyapunov dimension of the attractor,
but the difference may be less than 1.0, because depending on the time scale of
our observations and how slowly states in the basin of attraction approach the
attractor, behaviour near the attractor may be almost indistinguishable from
behaviour on the attractor.

9.2.2 Time as Yet Another Dimension

This approach may not be very interesting, but it is worth mentioning simply
because it can be used to extend any existing ID estimation method. If X comes
from a single time series, then temporal distance between all pairs of points is
defined. If we have them, we can simply augment each data point with the time
of the observation. If we do not, then we can augment each data point with its
index in X.

If X comes from multiple time series, we may still be able to estimate all
pairwise temporal distances by considering each time series in X to be a path
graph, and adding edges until we form a connected component. To find a set of
edges to add we could, for example, treat each time series as a node of another
graph, and find the MST of that graph, where the “distance” between two time
series is, e.g, the distance of their closest pair of points.

9.2.3 Minimum Spanning Tree

Building off the work of Costa and Hero[8], instead of using a MST in the phase
space, we can build a tree by starting with path graphs from our time series
and connecting them, as is described above. However, this might introduce a
bias where data from one long time series might appear to be more smooth
(and therefore low-dimensional) than data from multiple short time series. This
is intuitively similar to Spatio-temporal Isomap, because we are augmenting a
graph based on nearest neighbors with edges from the temporal ordering.

References

[1] Felix Hausdorff. Dimension und äußeres maß. Mathematische Annalen,
79(1):157–179, 1918.

13



[2] Eduard Čech, Zdeněk Froĺık, and Miroslav Katětov. Topological spaces.
1966.

[3] Alfréd Rényi. On the dimension and entropy of probability distribu-
tions. Acta Mathematica Academiae Scientiarum Hungarica, 10(1-2):193–
215, 1959.

[4] Francesco Camastra and Antonino Staiano. Intrinsic dimension estimation:
Advances and open problems. Information Sciences, 328:26–41, 2016.

[5] Daniele Granata and Vincenzo Carnevale. Accurate estimation of the in-
trinsic dimension using graph distances: Unraveling the geometric com-
plexity of datasets. Scientific reports, 6:31377, 2016.

[6] Vladimir Pestov. An axiomatic approach to intrinsic dimension of a dataset.
Neural Networks, 21(2):204–213, 2008.

[7] Peter Grassberger and Itamar Procaccia. Measuring the strangeness of
strange attractors. In The Theory of Chaotic Attractors, pages 170–189.
Springer, 2004.

[8] Jose A Costa and Alfred O Hero. Geodesic entropic graphs for dimension
and entropy estimation in manifold learning. IEEE Transactions on Signal
Processing, 52(8):2210–2221, 2004.

[9] J-P Eckmann and David Ruelle. Fundamental limitations for estimating
dimensions and lyapunov exponents in dynamical systems. Physica D:
Nonlinear Phenomena, 56(2-3):185–187, 1992.

[10] M Newman and IU Ojalvo. Vibration modes of large structures by an
automatic matrix-reductionmethod. AIAA Journal, 8(7):1234–1239, 1970.

[11] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P.
Flannery. Numerical Recipes in C (2Nd Ed.): The Art of Scientific Com-
puting. Cambridge University Press, New York, NY, USA, 1992.

[12] Jack M Wang, David J Fleet, and Aaron Hertzmann. Gaussian process dy-
namical models for human motion. IEEE transactions on pattern analysis
and machine intelligence, 30(2):283–298, 2008.

[13] Jerome H Friedman, Jon Louis Bentley, and Raphael Ari Finkel. An algo-
rithm for finding best matches in logarithmic expected time. ACM Trans-
actions on Mathematical Software (TOMS), 3(3):209–226, 1977.

[14] Robert W. Floyd. Algorithm 97: Shortest path. Commun. ACM, 5(6):345–,
June 1962.

[15] Odest Chadwicke Jenkins and Maja J Matarić. A spatio-temporal extension
to isomap nonlinear dimension reduction. In Proceedings of the twenty-first
international conference on Machine learning, page 56. ACM, 2004.

14



[16] Harold Froehling, James P Crutchfield, Doyne Farmer, Norman H Packard,
and Rob Shaw. On determining the dimension of chaotic flows. Physica D:
Nonlinear Phenomena, 3(3):605–617, 1981.

[17] James L Kaplan and James A Yorke. Chaotic behavior of multidimensional
difference equations. In Functional Differential equations and approxima-
tion of fixed points, pages 204–227. Springer, 1979.

15


	I Motivation
	II Background
	Manifold Learning
	Inverses
	Reprojection
	Reprojection Error


	Intrinsic Dimension
	Definition of Intrinsic Dimension


	III Estimation of Intrinsic Dimension
	The Ideal Intrinsic Dimension Estimator

	IV Intrinsic Dimension Estimators
	Projection Methods
	Fractal-based Methods
	Correlation Dimension
	Granata and Carnevale


	Intrinsic Dimension from Size of Minimum Spanning Tree

	V Dimensionality Reduction of Time Series
	Spatio-temporal Isomap
	Multidimensional Scaling
	Isomap
	Spatio-temporal Isomap

	Dimension of Attractors of Dynamical Systems
	Lyapunov exponents

	Estimation of Intrinsic Dimension of Time Series Data
	Previous Work
	Our Ideas
	Using Lyapunov Dimension
	Time as Yet Another Dimension
	Minimum Spanning Tree




