
Computational Economics (CS 396) Final Project Report

Brian Gauch
brian.gauch@vanderbilt.edu

ABSTRACT

Game theoretic approaches, particularly Stackelberg games, have

been widely deployed in recent years to allocate security

resources. Most existing security game models assume that a

security resource assigned to a target can only protect that target.

However, in many important real-world security scenarios, when a

resource is assigned to a target it exhibits protection externalities;

that is, it simultaneously provides protection for nearby targets.

We build off of the formulation in Gan et al. [Gan] that

incorporates protection externalities within a Stackelberg game.

They made no assumptions about the topology of the space in

which the targets and defense resources are located. However, this

meant that resources were constrained so that they could only be

located on a target. We note that in many cases security problems

are fundamentally planar and develop a new model that

incorporates this assumption. By constraining the problem to a

planar space, we are able to consider a more flexible set of

locations for resources, i.e., we remove the restriction that

resources must be located at targets. We then evaluate the

effectiveness of our model in comparison to Gan’s model in terms

of overall defender solution quality, and find that it is significantly

more effective in many cases.

1. INTRODUCTION

1.1 Motivation and Previous Work
Game theory is currently being applied to model security for

airports, ports, shipping and other vulnerable infrastructure.

Much of the research has focused on Stackelberg games, games in

which the attacker knows the defender’s strategy when choosing

their own through a priori surveillance [Korzhyk 11]. The goal

of the game, from the defender’s perspective, is to pick a strategy,

i.e., a probability distribution over resource allocations that

maximizes their utility. An assumption in most existing security

game models is that a security resource assigned to a target

protects only that target. However, in many real-world security

scenarios, when a resource is assigned to a target, it exhibits

protection externalities; that is, it also protects other

“neighboring” targets.

One formulation that includes protection externalities is described

in Gan et al. [Gan]. Their model makes no assumptions about the

topology of the space in which the targets and resources are

placed, however they do include the restriction that a resource

must be allocated “at” exactly one target in some sense. This

restriction is undesirable because there are many scenarios in

which one might want to place resources at locations that are not

co-incident with a target. Consider the situation in which there are

more targets than resources; one might want to place the resources

between the targets so that, if the targets are close together, a

single resource could cover more than one target.

To do this, we need to specify the metric space in which the

resources and targets lie. In many of the applications where

externalities exist in the allocation of defense resources, one can

imagine modeling the problem with targets on a plane and defense

resources defending a disc on the plane. When a defense resource

is a camera, radar, or mobile unit, the region that it defends is

roughly a disc. Accordingly, we choose for our metric space a

plane. Admittedly, this model is less suited to urban areas where

line of sight is important. This model is also unsuited to cyber

security or the defense of multi-story buildings, because the planar

assumption is likely to be violated.

2. MODEL
Gan et al. describe a model for allocating resources to targets that

incorporates protection externalities. We use this model as our

inspiration and it is the model to which our approach will be

compared. It is described more fully in Section 2.1. In Section

2.2, we describe our modifications to their model and discuss the

pros and cons of our approach.

2.1 Gan’s Model of Externalities
In [Gan], Gan et al. describe a Stackelberg game-based security

model in which the defender allocates resources to a set of targets

given that the resource has the externality of defending other

neighboring targets.

The defender has d resources and a set of t targets to defend. The

attacker’s available actions (who can only attack one target) are

exactly the set t. The set of actions available to the defender

varies based on the experiment, but always corresponds to points

on the plane so that the set of defended targets can be determined.

These actions are used to generate a game where the payoff for

each pair of actions depends on the value of the target and

whether or not the attacker got caught (the defender defended the

target that the attacker attacked). More generally, the defender

could have different values for targets that the attacker (the game

could not be zero-sum).

Their algorithm assumes the availability of an adjacency matrix A

indicating target adjacencies. A pure strategy for the defender

corresponded to an allocation of integer resources/defenders to

targets, such that each target was either defended or not defended

(1 or 0). The authors acknowledged the limitation of only

locating resources at targets and not between targets, but noted

that a dummy target with no value to the attacker or defender

could be placed at such locations. The set of actions available to

the defender is the set of subsets of t of size d.

2.2 Planar Model

2.2.1 Model Definition
Previously, the set of actions available to the defender was the set

of subsets of t of size d. Now, we would like to somehow allow

resources to be placed not on targets. So, instead of taking in as

input an adjacency matrix for targets, we need to define a metric

space so that we can determine distances, and therefore

adjacencies, ourselves. Although it would be natural to consider

defending a three-dimensional space, for simplicity, we choose for

our metric space a plane. In summary, we are adding a new

feature to Gan’s model, off-target resource placement, but at the

cost of introducing a new restriction, i.e., requiring that all

defenders and resources inhabit a two-dimensional world.

Specifically, we allow targets and resources to be placed

anywhere within our “world”, a rectangular region in ℝ2. For

convenience, we will consider the world to be bounded by [0,0]

and [1,1]. Because there are an infinite number of points in this

world, we need some sort of way to break it up into a finite

number of regions such that all points within a region are

equivalent for our purposes.

When a defense resource is a camera, radar, or mobile unit, the

region that it defends is roughly a disc. Therefore, the most

natural model is for a defense resource to defend a unit disk.

2.2.2 Unit Disks
Let each (uniform) resource have effective radius r. Let us notate

the set of targets within distance r of a point p as Tp. Then we can

say that two points p1, p2 are equivalent as potential locations for

a defense resource if Tp1 = Tp2.

Recall that, if the defender has d resources, defender actions

correspond to subsets of size d of some set of potential resource

locations P. In Gan’s model, P is the set of target locations. It is

natural for us to attempt to find the optimal P in the sense that it

allows for best solution of the resulting game. Consider the set S

of points created by selecting an arbitrary point from each region

of equivalence. It is easy to see that for any strategy possible

where P = ℝ2, there is an equivalent strategy (in the sense of

having the same payoffs) when P = S.

This is actually a stronger relation than we need; we only need for

the best strategy available when P = ℝ2 to be available when P =

S. For this reason we introduce the notion of a non-dominated

point/region. We say that a point p1 is non-dominated if ¬∃ p2

such that Tp1⊂Tp2. We similarly say that a region is non-

dominated if this property holds for all points within the region. I

claim that the best strategy available when P = ℝ2 is also available

when P = D where D is the subset of S that is non-dominated.

Now the question is how to find D and how big it is. We start by

observing that finding Tp for a point p can alternatively be thought

of as finding the set of disks of radius r, each centered on a target,

that intersect at point p. See figure 1 for a visualization of this

representation. Our problem of finding equivalence regions on

the plane now resembles the problem of finding cliques in a unit

disk graph, where disks are centered on targets. Our problem of

finding D would seem to correspond to the problem of finding all

maximal cliques in the unit disk graph. Figure 2 is one natural

example where this seems to be true.

Figure 1: The intersection model of unit disks on a plane, where

the center of each disk is a target, is a natural model for our

application. This class of graphs is known as unit disk graphs.

Figure 2: A natural example where D = the set of maximal

cliques in the corresponding unit disk graph, {{a}, {b,c},

{c,d,e}}.

However, it turns out that the problems are not identical. A graph

class defined by a geometric intersection model is said to have the

Helly property if for every clique C, there is some single point p

such that every vertex of C includes the point p. Clearly, to map

from a maximal clique back to nonempty region, we need for our

class of graphs, unit disk graphs, to have the Helly property; it

turns out that unit disk graphs do not have the Helly property.

Figure 3: Counterexample of the Helly property for unit disk

graphs. The three disks form a clique of size 3, but there is no

single point that lies within all 3 disks.

2.2.3 Boxicity 2 Graphs
Not only does the Helly property not hold for unit disk graphs, as

demonstrated in figure 3, but unit disk graphs can have an

exponential number of maximal cliques [Gupta]. It is worth

reconsidering our model of resources defending targets within a

unit disk at this point. If we instead model a defense resource as

defending all targets within some manhattan distance, finding D

would correspond with finding all maximal cliques in a boxicity 2

graph. Figure 4 is an example of a boxicity 2 graph. Boxicity 2

graphs have the Helly property and only have O(n2) maximal

cliques, where n in our case is the number of targets. Because

there are a polynomial number of maximal cliques, they can all be

found in polynomial time [Tsukiyama].

Figure 4: A boxicity 2 graph is the intersection graph of axis-

aligned reactangles.

Boxicity 2 graphs can be considered to be a polynomial

approximation of the more natural unit disk intersection model in

the following sense. First construct the unit disk graph. Then

construct a boxicity 2 graph such that each rectangle is inscribed

in the corresponding disk. Two such rectangles intersect only if

the disks they are inscribed in also intersect, as can be seen in

figure 5. Using this fact and the Helly property, we can see that

for such a boxicity 2 graph the set of its maximal cliques is a

subset of D.

Figure 5: Two inscribed rectangles intersect only if the

corresponding disks intersect.

Alternatively, if we consider the boxicity 2 graph not as an

approximation of a true, disk-based model, but as the model itself

(i.e., each defense resource can defend all targets within some

manhattan distance), the maximal cliques of the boxicity 2 graph

correspond exactly to D.

It is worth noting that although a unit disk graph has an

exponential number of maximal cliques, because not all of these

maximal cliques correspond to a region in D, D may still be of

polynomial size even when a defense resource defends a unit disk.

However the authors of this report are unaware of a method for

enumerating the cliques that do obey the Helly property, or even

counting them.

3. IMPLEMENTATION
Our model is implemented in C++ on a linux platform. It is

comprised of four major modules, namely, the world builder, the

resource location selector, the game initializer, and the game

solver. Each of these is described in more detail below.

3.1 World Builder
The world builder is given the size of the world and the number

of targets. It produces a mapping of targets to locations. Targets

are placed uniformly at random locations.

3.2 Resource Location Selector
The resource location selector is given the target placements, the

size of the world, the number of targets, and which model to use.

It produces a set of resource locations to be considered during the

game proper. It implements Gan’s resource placement model and

our planar, maximal clique algorithm. The resource location

algorithm used is controlled by a flag for experimental purposes.

We implemented a simple maximal clique finding algorithm that

runs in exponential time. It does not exploit any properties of

boxicity 2 graphs except for the bounded number of maximal

cliques. It simply keeps track of candidate cliques and keeps

growing each, possibly creating several candidates of size k+1

from a candidate of size k. Initial candidates are the set of

vertices/boxes. A candidate is added to the maximal clique list

when it can no longer be grown while still being a clique. Each

candidate and its descendent candidates only need attempt to add

each vertex once, because if it could not be included into the

clique earlier in the process, it cannot be included later.

Candidates are stored in a set so that duplicates of a maximal

clique cannot be included by building them in a different order.

To enforce the set property, it takes O(log(n)) time to insert a

candidate. The algorithm is exponential because any number of

candidates can “dead end” by attempting to insert themselves into

the maximal clique set and finding that they are a duplicate.

3.3 Game Initializer
The game initializer is given as input the target placements, and

the possible resource placements. It produces a normal form

game utility matrix for use by the game solver. It has three main

tasks:

1) It enumerates attacker actions that are simply the set of targets

2) It enumerates defender actions by selecting subsets of selected

resource placements;

3) It then calculates the utility of each action pair by determining

whether or not the attacker attacked a defended target, and using

the value of the attacked target.

It would be simple enough to also incorporate target values, but

we have no reason to believe that the distribution of target values

would affect the relative effectiveness of our model vs. Gan’s

model. So, we simply treat all targets as having uniform value.

3.4 Game Solver
The game solver is given a game in normal form utility matrix

form, and outputs the expected utility of the defender.

We used a linear program for solving zero sum games, which was

implemented in homework 3 of Vanderbilt’s spring 2015 offering

of CS396: “Computational Economics”.

3.5 Testing Framework
In addition to the modules there is a testing framework for their

combination and analysis. A shell script that loops over all

parameter values in the specified ranges, loops for the specified

number of trials (100 in our case), calls the other modules in order

with those parameters, and outputs the final resulting defender

utility of each trial to a csv file for later analysis.

4. RESULTS

4.1 Experimental Design
We will compare three models:

1) A simple security game with no protection externalities

2) Gan’s model

3) Our planar, maximal-clique model

Model (1) can be viewed as a special case of (2) or (3) in which

resource range = 0. Because we assign targets uniform value for

the attacker and defender, the solution to (1) will always be to

distribute defense resources with uniform probability among

targets.

We will often refer to our model as the Planar model. We will

sometimes refer to model (2) as the Non-Planar model, but recall

that in (2) the defender benefits from the range of its resources

and is merely naïve with respect to the underlying planar model.

Model (1) will be treated as a baseline for (2) and (3), so that we

can see how much utility the defender gains from the existence of

planar externalities (and awareness of externalities), and how

much the defender gains from awareness of the planar space. If

the expected utility of (3) – (1) is significantly higher than that of

(2) – (1), then the space is worth modeling when it is planar and

proximity-based externalities exist.

4.2 Results
We explored the parameter space up to #targets=10,

#resources=5, and range=0.3 in 0.1 increments. For each

combination of parameters, we played 100 games with both

models, each time redistributing targets uniformly at random from

[0,0] to [1,1]. There were 120 combinations of parameters tested

in all. For all combinations with range>=0.1 and #targets >=4,

there was a significant increase in defender utility when using the

Planar model.

Below, we plot a representative subset of the results in figures 6

through 11. “Possible gain” is the maximum possible defender

utility (associated with defending all targets) minus model (1)’s

expected utility. “Utility gain” is the difference in expected

utilities of (3) - (1) and (2) - (1) respectively.

Figure 6: With 5 targets and range 0.1, we compared the mean

utility gain across 100 trials for the non-planar and planar models

for 1 through 4 resources. Using a two-tailed student t-test, we

found that the planar model significantly outperformed the non-

planar version for all test scenarios (p < 0.05).

Figure 7: With 5 targets and range 0.2, we compared the mean

utility gain across 100 trials for the non-planar and planar models

with 1 through 4 resources. Using a two-tailed student t-test, we

found that the planar model significantly outperformed the non-

planar version for all test scenarios (p < 0.05).

Figure 8: With 5 targets and range 0.3, we compared the mean

utility gain across 100 trials for the non-planar and planar models

with 1 through 4 resources. Using a two-tailed student t-test, we

found that the planar model significantly outperformed the non-

planar version for all test scenarios (p < 0.05).

Figure 9: With 10 targets and range 0.1, we compared the mean

utility gain across 100 trials for the non-planar and planar models

with 1 through 5 resources. Using a two-tailed student t-test, we

found that the planar model significantly outperformed the non-

planar version for all test scenarios (p < 0.05).

Figure 10: For 5 targets and range 0.1, we compared the mean

utility gain for the non-planar and planar models with 1 through 5

resources. Using a two-tailed student t-test, we found that the

planar model significantly outperformed the non-planar version

for all test scenarios (p < 0.05).

Figure 11: With 10 targets and range 0.3, we compared the mean

utility gain across 100 trials for the non-planar and planar models

with 1 through 5 resources. Using a two-tailed student t-test, we

found that the planar model significantly outperformed the non-

planar version for all test scenarios (p < 0.05).

Overall, our planar model reaps significantly more benefits from

proximity-based externalities than Gan’s model, assuming that the

space is in fact planar.

In trivial scenarios, where the number of defense resources is no

less than the number of targets, all three models naturally perform

the same. Unsuprisingly, in relatively easy scenarios, where the

number of resources is high and resources have long range, Gan’s

model perfoms almost as well as ours; Clearly, as range

approaches world size, Gan’s model becomes equivalent to ours.

It seems that in harder defense scenarios, where the number of

resources is small compared to the number of targers, and where

the range of each resource is small compared to the world size,

our model gets ~1.5-2 times the benefit from externalites as Gan’s

model.

5. RELATED WORK
Game theory in its present form was originally presented by von

Neumann in his 1928 paper. Although most closely tied to

economics, almost since its inception game theory has been

applied to security problems, most famously during the 1950s to

model global nuclear strategy. Also during the 1950s, Nash

famously developed a criterion for mutual consistency of players’

strategies in non-cooperative games, known as the Nash

equilibrium [Wiki]. This sparked great interest in the field as

many research groups extended the models, defining for example

repeated and extensive form games, and applied them to new

areas.

More recently, thanks to increased computational power and new,

efficient algorithms, it has become practical to use Stackelberg

games to model real-world security problems. Because it seems

natural to assume that the attacker conducts surveillance,

Stackelberg games became more popular for such problems than

models in which both players act simultaneously. One of the key

revitalizing papers was Brown et al., 2006 [Brown 06] in which

they argue that critical infrastructure defense must become more

sophisticated to be adequately protect against terrorist attacks.

They advocate the use of optimization models, in particular, the

Stackelberg model, as a way to model attackers and defenders to

develop a robust protection system. Real world applications

include the ARMOR security system deployed at the Los Angeles

International Airport [Pita, 2008] and the IRIS system deployed

by the Federal Air Marshals Service to allocate marshals to tours

of duty to protect commercial flights [Jain, 2010].

Gan et al. [Gan] term games in which one defense resource can

defend multiple nearby targets Security Games with Protection

Externalities (SPEs). They use the term externality because each

resource is assigned to one primary target, and may defend other

nearby targets, as a bonus. They show that finding Stackelberg

equilibria in such games is NP-hard. Nevertheless, they show that

polynomial approximations perform better than ignorant solutions

when proximity-based protection externalities exist.

Fang et al. [Fang 2013] and Xu et al. [Xu 2014] did not call the

effect an externality, but studied patrol paths on the real number

line with moving targets, where a defense resource had an

effective range. Because a defense resource was not bound to a

particular target, but was instead constrained to a particular metric

space, this work is in some senses more similar to our own than

Gan’s.

6. CONCLUSIONS

6.1 Summary
We are interested in game theoretical approaches to the allocation

of resources to the defense targets – so-called security games. We

were inspired by Gan’s model of security games, which

incorporates protection externalities. We introduce our planar,

maximal clique model for allocating defender resources to protect

targets. Our version extends the protection externalities described

by Gan to allow for resource locations other than at target

locations. To solve this problem we have defined a metric space

for the game world, in our case, a plane, so that we can say that a

resource defends a target if it is sufficiently close. Although the

most natural model is for a resource to defend a disk around itself,

we compromised by having a resource defend an axis-aligned

rectangle around itself. This allows us to find non-dominated

resource locations quickly, since these correspond to maximal

cliques in a boxicity 2 graph where each target is an axis-aligned

rectangle.

We implemented Gan’s version and ours and evaluated the two

approaches using the expected utility gains over the externality-

free model. We tested both models over a range of scenarios,

varying the numbers of targets and resources from 1 to 10 and

from 1 to 5, respectively. Effective resource range was varied

from 0.1 to 0.3 in increments of 0.1, with all targets placed

uniformly at random between [0,0] and [1,1]. For each of the 120

resulting scenarios, utility was calculated using a zero sum Nash

equilibrium solver.

We found that a knowledge of the planar space results in

significant improvements to expected defender solution quality in

all non-trivial scenarios where the number of targets >=4 and

range >= 0.1.

6.2 Future Work
There is a fundamental tradeoff between the number of actions

considered and the time to solve the resulting game. Because the

solution to the SPE corresponds to a set covering, each target

should be defended by at least one action to allow for a good

solution. In this project, we simply considered all O(n2) maximal

cliques, but more practically a O(n) subset should be considered

so that the resulting game takes no longer to solve.

What makes a selection of maximal cliques good? That is, what

actions should be added first when attempting to allow for good

solutions to the game? There are a number of natural heuristics

one might consider. One could greedily add the largest maximal

cliques to the set of actions. One could greedily add the action

that protects the most as-yet-unprotectable targets. One could

imagine more sophisticated algorithms searching for a set of

actions with backtracking. This may merit significant further

work.

Although the exponential running time of our boxicity 2 maximal

clique finding algorithm itself did not matter for the purposes of

our tests, since the game was of exponential size, it may matter

when used with a polynomial, approximate game solving

algorithm such as CLASPE. For this reason, it may be

worthwhile to develop faster boxicity 2 maximal clique finding

algorithms. Using the general result from [Tsukiyama], we see

that there exists a O(n3m) algorithm. We suspect that a

O(n2log(n)) algorithm exists that uses a sweep line. Since a

boxicity 2 graph may have O(n2) maximal cliques, O(n2) is the

fastest we could hope for.

Polynomial algorithms may even exist to find all maximal cliques

in a unit disk graph that obey the Helly property; that is, it may be

possible to find not just a subset of D but all of D - this would

allow for truly optimal solutions in the sense that the expected

utility of the defender in the solved, resultant game would be

maximized. If such an algorithm existed, the authors of this

report suspect that it would fall in the area of computational

geometry, not graph theory.

Finally, metric spaces other than a plane could be considered.

7. REFERENCES
[1] Jiarui Gan, Bo An, and Yevgeniy Vorobeychik. Security

games with protection externalities. (AAAI, 2015, to appear).

[2] Gupta, Rajarshi, Jean Walrand, and Olivier Goldschmidt.

"Maximal cliques in unit disk graphs: Polynomial

approximation." Proceedings INOC. Vol. 2005. 2005.

[3] Tsukiyama, Shuji, et al. "A new algorithm for generating all

the maximal independent sets." SIAM Journal on Computing

6.3 (1977): 505-517.

[4] Fang, F.; Jiang, A. X.; and Tambe, M. 2013. Optimal patrol

strategy for protecting moving targets with multiple mobile

resources. In Proceedings of the 12th International

Conference on Autonomous Agents and Multi-agent Systems

(AAMAS’13), 957–964.

[5] Brown, Gerald, et al. "Defending critical infrastructure."

Interfaces 36.6 (2006): 530-544.

[6] Xu, H.; Fang, F.; Jiang, A. X.; Conitzer, V.; Dughmi, S.;

and Tambe, M. 2014. Solving zero-sum security games in

discretized spatio-temporal domains. In Proceedings of the

28th AAAI Conference on Artificial Intelligence (AAAI’14).

[7] Pita, James, et al. "Deployed ARMOR protection: the

application of a game theoretic model for security at the Los

Angeles International Airport." Proceedings of the 7th

international joint conference on Autonomous agents and

multiagent systems: industrial track. International

Foundation for Autonomous Agents and Multiagent Systems,

2008.

[8] Jain, Manish, et al. "Security Games with Arbitrary

Schedules: A Branch and Price Approach." AAAI. 2010.

[9] Korzhyk, Dmytro, Vincent Conitzer, and Ronald Parr.

"Complexity of Computing Optimal Stackelberg Strategies in

Security Resource Allocation Games." AAAI. 2010.

[10] Spinrad, Jeremy P. Efficient graph representations. American

mathematical society, 2003.

[11] Wikipedia contributors. "Game theory." Wikipedia, The Free

Encyclopedia. Wikipedia, The Free Encyclopedia, 1 Mar.

2015. Web. 4 Mar. 2015.

[12] Wikipedia contributors. "Clique (graph theory)." Wikipedia,

The Free Encyclopedia. Wikipedia, The Free Encyclopedia,

6 Apr. 2015. Web. 6 Apr. 2015.

[13] Wikipedia contributors. "Unit disk graph." Wikipedia, The

Free Encyclopedia. Wikipedia, The Free Encyclopedia, 24

Aug. 2014. Web. 6 Apr. 2015.

[14] Wikipedia contributors. "Boxicity." Wikipedia, The Free

Encyclopedia. Wikipedia, The Free Encyclopedia, 22 Mar.

2015. Web. 6 Apr. 2015.

